Contact geometry and CR structures on S3

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fano Manifolds, Contact Structures, and Quaternionic Geometry

Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...

متن کامل

Contact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form

In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition  h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.

متن کامل

Minimality in CR geometry and the CR Yamabe problem on CR manifolds with boundary

We study the minimality of an isometric immersion of a Riemannian manifold into a strictly pseudoconvex CR manifold M endowed with the Webster metric (associated to a fixed contact form on M), hence formulate a version of the CR Yamabe problem for CR manifolds-with-boundary. This is shown to be a nonlinear subelliptic problem of variational origin.

متن کامل

Para-CR structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

We determine a 2-codimensional para-CR structure on the slit tangent bundle T0M of a Finsler manifold (M,F ) by imposing a condition regarding the almost paracomplex structure P associated to F when restricted to the structural distribution of a framed para-f -structure. This condition is satisfied when (M,F ) is of scalar flag curvature (particularly constant) or if the Riemannian manifold (M,...

متن کامل

CR-structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

We determine a 2-codimensional CR-structure on the slit tangent bundle T0M of a Finsler manifold (M, F) by imposing a condition on the almost complex structure associated to F when restricted to the structural distribution of a framed f -structure. This condition is satisfied when (M, F) is of scalar flag curvature (particularly flat). In the Riemannian case (M, g) this last condition means tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica

سال: 1994

ISSN: 0001-5962

DOI: 10.1007/bf02392789